首页> 综合百科>小百科>

琴生不等式是什么

新嘟百科2024-05-05
什么是琴生不等式琴生不等式以丹麦技术大学数学家约翰·延森(John Jensen)命名。它给出积分的凸函数值和凸函数的积分值间的关系。琴生(Jensen)不等式(也称为詹森不等式),使用时注意前提、等号成立条件。Jensen不等式,又名琴森不等式或詹森不等式(均为音译)。它是一个在描述积分的凸函数值和凸函数的积分值间的关系的不等式。琴生不等式是以丹麦数学家约翰·琴生(Johan Jensen)命名...

本篇文章给大家谈谈琴生不等式是什么,以及琴生不等式是什么意思对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

琴生不等式是什么

什么是琴生不等式

琴生不等式以丹麦技术大学数学家约翰·延森(John Jensen)命名。它给出积分的凸函数值和凸函数的积分值间的关系。琴生(Jensen)不等式(也称为詹森不等式),使用时注意前提、等号成立条件。

Jensen不等式,又名琴森不等式或詹森不等式(均为音译)。它是一个在描述积分的凸函数值和凸函数的积分值间的关系的不等式。

琴生不等式是以丹麦数学家约翰·琴生(Johan Jensen)命名的一个重要不等式,琴生不等式也称之为詹森不等式,它本质上是对函数凹凸性的应用。

琴生不等式的定义?

Jensen不等式,又名琴森不等式或詹森不等式(均为音译)。它是一个在描述积分的凸函数值和凸函数的积分值间的关系的不等式。

EM算法的推导过程中用到的一个很重要的不等式就是琴生不等式(Jenson inequality),相信大家在高等数学的课程中都学习过这个不等式,这里只简单回顾一下这个不等式的性质:设f是定义域为实数的函数,如果对于所有的实数x。

当且仅当 时等号成立。一般称(2)式为琴生不等式。更为一般的情况是:设 是定义在区间[a,b]上的函数,如果对于[a,b]上的任意两点 ,有 其中 ,则称 是区间[a,b]上的凸函数。

是。琴生不等式判定一个函数具有凹凸性质的充要条件,并且给出了凸函数的一个重要性质。琴生(Jensen)不等式(也称为詹森不等式),使用时注意前提、等号成立条件。

平均不等式、柯西不等式、闵可夫斯基不等式、贝努利不等式、赫尔德不等式、契比雪夫不等式、排序不等式、含有绝对值的不等式、琴生不等式、艾尔多斯-莫迪尔不等式。

琴生不等式可以用测度论或概率论的语言给出。这两种方式都表明同一个很一般的结果。 以概率论的名词,是个概率测度。函数换作实值随机变量(就纯数学而言,两者没有分别)。

詹森不等式是什么?

Jensen不等式,又名琴森不等式或詹森不等式(均为音译)。它是一个在描述积分的凸函数值和凸函数的积分值间的关系的不等式。

詹森不等式是以丹麦数学家约翰·詹森(Johan Jensen)命名。它给出积分的凸函数值和凸函数的积分值间的关系。琴生(Jensen)不等式(也称为詹森不等式),使用时注意前提、等号成立条件。

Jensen不等式,又名琴森不等式或詹森不等式(均为音译)。它是一个在描述积分的凸函数值和凸函数的积分值间的关系的不等式。jensen不等式也就是琴生不等式,琴生不等式以丹麦技术大学数学家约翰·延森(John Jensen)命名。

詹森不等式是以丹麦数学家约翰·詹森(Johan Jensen)命名。它给出积分的凸函数值和凸函数的积分值间的关系。它本质上是对函数凹凸性的应用。

琴生不等式以丹麦技术大学数学家约翰·延森(John Jensen)命名。它给出积分的凸函数值和凸函数的积分值间的关系。琴生(Jensen)不等式(也称为詹森不等式),使用时注意前提、等号成立条件。

jensen不等式是什么?

Jensen不等式,又名琴森不等式或詹森不等式(均为音译)。它是一个在描述积分的凸函数值和凸函数的积分值间的关系的不等式。

詹森不等式是以丹麦数学家约翰·詹森(Johan Jensen)命名。它给出积分的凸函数值和凸函数的积分值间的关系。琴生(Jensen)不等式(也称为詹森不等式),使用时注意前提、等号成立条件。

琴生不等式以丹麦技术大学数学家约翰?延森(Johan Jensen)命名。它给出积分的凸函数值和凸函数的积分值间的关系。琴生(Jensen)不等式(也称为詹森不等式),使用时注意前提、等号成立条件。

Jensen不等式是关于凸性(convexity)的不等式。凸性是非常好的性质,在最优化问题里面,线性和非线性不是本质的区别,只有凸性才是。如果最优化的函数是凸的,那么局部最优就意味着全局最优,否则无法推得全局最优。

琴生不等式以丹麦技术大学数学家约翰·延森(John Jensen)命名。它给出积分的凸函数值和凸函数的积分值间的关系。琴生(Jensen)不等式(也称为詹森不等式),使用时注意前提、等号成立条件。

Jensen不等式:如果f(x)在(a,b)上是凸函数,x1,x2都在(a,b)上,证明不等式:f[(x1+x2)/2]≥1/2[f(x1)+f(x2)]成立。

版权声明:本图文转载自网络,版权归属原作者,如涉侵权,请联系删除。